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Abstract

In this paper we obtain mixed variational formulations for the fully linear elastic equilibrium problem of continua

with vectorial microstructure by the application of the semi-inverse method proposed by Ji-Huan He. Applications to

microcracked and piezoelectric bodies are then investigated.

� 2002 Elsevier Science Ltd. All rights reserved.

AMS classification: 74A60; 74F99; 49S05

Keywords: Continua with microstructure; Linear theory; Variational formulation; Semi-inverse method; Multifield theories

1. Introduction

We use the He’s (1997a,b,c) semi-inverse method to obtain a variational characterization of weak so-
lutions for the equilibrium problem of a linear hyperelastic body endowed with a vectorial microstructure.

For a continuum with microstructure we intend, in the manner of Capriz (1985, 1989, 2000), a ‘‘micro-
structured’’ body which can be modelled by using two (or perhaps more) descriptors of the physical
configurations, namely the placement field (assigning to each material element its place in the Euclidean
point space) and an order parameter field by which we want to account for the microstructure which
characterizes the material comprising the body. Thus, behind the kinematical descriptor of classical con-
tinuum mechanics, the placement field or, equivalently, the displacement field, in the so called multifield
theories there are new descriptors, the order parameters, which accounts for the presence of the micro-
structure. In the case of a vectorial microstructure the order parameter is a vector, called the director. All
the descriptor fields are observable ‘‘objects’’ and then new measures of interaction behind the standard
stress need to be associated to them and appropriately balanced.

The semi-inverse method was first introduced by He (1997c) in variational formulations of fluid me-
chanics. 1 By the application of the semi-inverse method one could obtain a variational characterization of
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a differential problem starting directly from the system of differential equations and boundary conditions
which describe the problem itself. This fact allows to have several different variational formulations of the
same problem, very useful in technical and computational applications. As pointed out by He, it therefore
allows to overcome the so called variational crisis. This phenomenon was studied by different authors: it is
well known that the traditional way to generalize variational principles is the Lagrange multipliers method;
sometimes, however, during the process of multiplier identification some of them become zero, a circum-
stance which happens when a variable involved only in the constraint equations doesn’t appear in the
original functional one wants to generalize.

The semi-inverse method was first suggested by He (1997a,b) in fluid mechanics to establish generalized
variational principles and in linear elasticity where it was proposed to obtain an equivalent formulation of
the Hellinger–Reissner and Hu–Washizu principles; then the method was applied to rederive the variational
principle of Hellinger–Reissner via a procedure different from the Lagrange multipliers. A generalization of
the Hellinger–Reissner principle by the construction of a family of mixed functionals was obtained (He,
2000). This version of the theorem is very useful in the applications with the mixed finite element method.
Finally, the method was used to obtain variational principles for electroelastic bodies (see He, 2001).

As we have already observed the procedure used by He could be generalized using more general trial
functionals, characterized by a Lagrange function totally unknown which satisfies only the integrability
condition (see Mosconi, 2002).

In this paper we want to obtain by means of the semi-inverse method a mixed variational formulation
which is a generalization of the Hu–Washizu principle, in the case of a linear elastic ‘‘microstructured’’
continuum endowed with an order parameter field of vector type. The six fields mixed functional we get is
more general than the linear ones proposed in (Steinmann and Stein, 1997) for micropolar continua. The
proof is given in the case of a vectorial order parameter but the same procedure applies also for a generic
order parameter.

Based on the obtained variational principles, various numerical methods (finite element methods,
meshfree methods) can be powerfully applied and various approximate theories for linear elastic plates and
rods with microstructure, useful in engineering applications, can be derived.

2. Mathematical formulation of equilibrium for continua with microstructure

Here we recall the basic equations of the theory of continua with vectorial microstructure 2 (for general
treatments see Capriz (1989, 2000) and Mariano (2001)).

Let B ¼ BðtÞ, a regular bonded open subregion of three-dimensional Euclidean point space E, be the
current configuration at a given time t of a continuous body B endowed with a microstructure and
BR ¼ Bðt0Þ a fixed referential configuration of the body. The material element p of such a body B, whose
reference placement we denote with X, can be seen as a Lagrangean system, identified by the current
placement x 2 E of its centre of mass (the apparent placement) plus extra degrees of freedom, a finite
number (for example m) of independent Lagrangean variables (the order parameters) which describe the
microstructure. It is possible to choose the order parameters in an element d of an appropriate differentiable
manifoldM of dimension m. So the complete placement of a material element p is the following mapping of
R� BR � E into E�M:

ðxðX; tÞ; dðX; tÞÞ; ð2:1Þ

2 We will denote byV the vector space associated to the point space E. We use SanSerif letters to denote microstructural quantities,

so the microstructural fields T, b shall not be confused with the macroscopic ones T, b.
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in the sequel we will neglect the time variable and we shall assume that xð�Þ and dð�Þ are continuous and
piecewise continuously differentiable in space. Moreover, we will consider only the case of a vectorial order
parameter d, from now on the director, and we will write rd for the gradient of the director, 3

u ¼ xðXÞ 	 X for the displacement field and E for the infinitesimal strain tensor associated to the macro-
displacement. In this work we will consider only infinitesimal mechanical deformations ðkruk ¼ a1, with a1
a small parameter), so reference and current configurations will be confused for each other.

In the model of continua with vectorial microstructure (a special case of the general format given by
Capriz (1989)) the following fields must be considered in order to formulate the equilibrium problem of
such a body:

• the current stress T,
• the volume force b,
• the boundary force s,
• the microstress T,
• the volume microforce b,
• the boundary microforce s,
• the interactive microforce k,

The last vector field k (also called internal self-force) is a term which accounts for the internal interactions in
the substructure, while the vector field b accounts for the external volume forces acting upon the sub-
structure; in the general theory with a generic order parameter, they are both elements of the cotangent
space T�

dM of M at d. The microstress T is a linear transformation of V to T�
dM, in this case an element

of Lin, 4 such that a generalization of the classical Cauchy theorem gives: s ¼ Tn (see Capriz and Virga,
1990), which is in general the element of the cotangent space, in the case a vector too, representing the
action exerted on the microstructure through a surface element whose unit exterior normal is n (it is called
the generalized traction, or briefly, the microtraction and physically it accounts for the interaction between
neighboring substructures).

We suppose that the boundary oB of the body is composed of two sets of two complementary and
disjoint portions, namely:

o1B [ o2B ¼ oB; o1B \ o2B ¼ ;;
o3B [ o4B ¼ oB; o3B \ o4B ¼ ;;

and that in each point of oB the outward unit normal n is well-defined. Moreover, the following data are
given: a system of loads, i.e. two pairs ðb; s0Þ and ðb; s0Þ, where b is the volume–load vector field and b the
micro-volume–load vector field both defined over B, s0 and s0 being respectively the surface–load vector
defined over o2B and the micro-surface–load vector defined over o4B (they are data), and two fields u0 and
d0 assigned over o1B and o3B respectively.

If constraints are applied to the substructure in the same portion o1B of the boundary in which the
motion is constrained, then

o1B � o3B and o2B � o4B; ð2:2Þ
this particular case often occurs in physical applications.

3 Because of we are concerning with the linear theory we do not make distinction between referential or current differential

operators, even if we underline that the order parameter field (as all fields involved in mechanical models) may have a spatial d(x,t) and
a material d(X,t) description.

4 Lin denotes the space of second-order tensors, while sym the space of symmetric second-order tensors and skw the space of skew-

symmetric second-order tensors, with Lin ¼ Sym� Skw.
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An elastic state for a continuum with vectorial microstructure (briefly, a vectorial ‘‘microstructured’’
elastic state) corresponding to the volume forces ðb; bÞ is an admissible 5 ordered array of the form
ðu;E;T; d;rd;TÞ such that the following equations are fulfilled:

• equilibrium equations: 6

divTþ b ¼ 0 in B; ð2:3aÞ
divTþ bþ k ¼ 0 in B; ð2:3bÞ
skw ðTþ TrdT 	 k� dÞ ¼ 0 in B; ð2:3cÞ
Tn	 s0 ¼ 0 on o2B; ð2:3dÞ
Tn	 s0 ¼ 0 on o4B; ð2:3eÞ

• kinematical equations:

E	 symru ¼ 0 in B; ð2:4aÞ
u	 u0 ¼ 0 on o1B; ð2:4bÞ
d	 d0 ¼ 0 on o3B; ð2:4cÞ

• constitutive equations:

symT ¼ ow
oE

;

k ¼ 	 ow
od

; in B;

T ¼ ow
oðrdÞ :

ð2:5Þ

Eqs. (2.3a)–(2.3c) are, respectively, the standard Cauchy’s balance of force, the balance of substructural
interactions (or balance of microforce) and the torque balance.

Remark 1.We observe that, in the general theory, the balance of substructural interactions is not given only
by Eq. (2.3b), because the element of the cotangent space divTþ bþ k must belong to the null space of the
linear operator AT, where A is the infinitesimal generator of the local action onM of the group of rotations.
When A is of the form d� this null space coincides with the whole tangent space ofM at d and the balance
of microinteractions has the form (2.3b) (for the general theory justifying these assertions see Capriz and
Virga (1990, 1994); Mariano (2001)).

5 We recall that in the classical linear theory of elasticity an elastic state ðu;E;TÞ is admissible if (see Gurtin, 1972): (i) the vector field
u is an admissible displacement field i.e. u is of class C2 on B and u and symru are continuous on B; (ii) E is an admissible strain field

i.e. E 2 Sym and E is continuous on B; (iii) T is an admissible stress field i.e. T 2 Sym, T is smooth on B and T and divT are continuous

on B. In the case of elasticity with microstructure it is well known that the stress tensor T could not be symmetric because of the

presence of the microstructure itself, so for the definition of an admissible state for a continuum with microstructure

N ¼ ðu;E;T; d;rd;TÞ, briefly an admissible ‘‘microstructured’’ state, one has to change the condition (iii) not requiring that

T 2 Sym and has to add the following conditions for the fields relative to the microstructure; (iv) d is of class C2 on B and continuous

on B; (v) rd is continuous on B; (vi) T is smooth on B and T and divT are continuous on B. The previous conditions (i)–(vi) are the
simplest regularity conditions one has to require in order to give meaning to the equations we are going to consider.

6 We will denote by symA ¼ 1=2 ðAþ ATÞ and skwA ¼ 1=2ðA	 ATÞ respectively the symmetric part and the skew-symmetric part

of a second-order tensor A. Moreover a� b will denote the tensor product, such that ða� bÞu ¼ ðb � uÞa, 8a, b, u 2 V.
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The constitutive equations (2.5) are the general form of constitutive equations that one could obtain in
the conservative case from the existence of an elastic potential, by the local dissipation inequality applied to
an hyperelastic material with a response function of the form

w ¼ ŵwðE; d;rdÞ: ð2:6Þ

In the present paper we restrict our analysis to the case in which the order parameter is a vector (the
director) belonging to R3. We assume also that the body undergoes small deformations and kdk ¼ a2 and
krdk ¼ a3, with a2, a3 small parameters. By a linearization procedure with respect to a ¼ maxfa1; a2; a3g,
assuming the existence of a generalized stress-free state considered as natural state of the body, we get from
(2.5) the following constitutive equations

symT ¼ C½E� þ h½d� þH½rd�; ð2:7aÞ
k ¼ 	Kd	 hT½E� 	 f½rd�; ð2:7bÞ
T ¼ S½rd� þHT½E� þ fT½d�; ð2:7cÞ

whereas the elastic energy (2.6) has the quadratic representation:

ŵwðE; d;rdÞ ¼ 1
2
ðC½E� � Eþ Kd � dþ S½rd� � rdþ 2h½d� � Eþ 2H½rd� � Eþ 2f½rd� � dÞ; ð2:8Þ

here C, S and H are fourth-order tensors, the first two symmetric and positive-definite, h and f are third-
order tensors and K is a second-order positive-definite symmetric tensor; in particular h maps V into Sym
while H maps Lin into Sym. 7 The energy (2.8) coincides with the purely linear elastic energy density when
the microstructure is absent, that is d¼ 0.

A situation which is interesting for applications is when the energy (2.6) admits the decomposition

ŵwðE; d;rdÞ ¼ uðE; dÞ þ #ðrdÞ; ð2:9Þ

in such a way that

symT ¼ ou
oE

; k ¼ 	 ou
od

; T ¼ o#

oðrdÞ ; ð2:10Þ

where

uðE; dÞ ¼ 1
2
ðC½E� � Eþ Kd � dþ 2h½d� � EÞ: ð2:11Þ

The term

#ðrdÞ ¼ 1
2
S½rd� � rd ð2:12Þ

is the interfacial energy and it represents the energy contribution of the weakly non-local interactions due to
neighboring substructures. The assumption of the decomposition (2.9) is equivalent to the physical con-
sideration that the variation of the global energy due to the variation of the microstructure is a somewhat
local term restricted to the interface between neighboring substructures. The constitutive equations ob-
tained are very common for the applications in electromagnetic solids mechanics. In Section 5 we will
discuss another simplified version of constitutive equations (2.7a)–(2.7d) used to model microcracked
bodies in (Mariano and Stazi, 2001), whereas in Section 6 we shall describe piezoelectric bodies as an
example of continua with a scalar microstructure.

7 Accordingly, C has the two minor symmetries while H and h the minor symmetry relative to the first two indices (left minor

symmetry).
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Remark 2.We observe that the torque balance (2.3c) represents a constitutive prescription on the stress field
T; in fact, it follows from the axiom of invariance of the internal power under changes of observer. In the
linear case considered here, as a consequence of the linearization, the balance (2.3c) reduces to the following
symmetry condition on the stress T:

skwTþ oðaÞ ¼ 0: ð2:13Þ
Thus from the constitutive equation (2.7a) we get the linear elastic response function in term of the total

Cauchy stress, namely

T ¼ bTTðE; d;rdÞ ¼ C½E� þ h½d� þH½rd�; ð2:7dÞ
and in the definition of an admissible linear elastic state for the considered ‘‘microstructured’’ continuum
(cf. Footnote 5, condition (iii)), one should require that T 2 Sym. In the sequel we will denote by A the
space of all admissible vectorial ‘‘microstructured’’ linear elastic states.

We have just summarized briefly some basic results from the theory of materials with elastic substruc-
tures, restricting our analysis to some cases of linear elastic behavior of models with vectorial order pa-
rameters. For the sake of brevity, we will denote by S the system of equations (2.3a), (2.3b), (2.3d),
(2.3e)[ (2.4a)–(2.4c)[ (2.7d), (2.7b), (2.7c)[ (2.13).

Let us define the following mixed real functional:

C : A ! R;

C u;E;T; d;rd;Tf g ¼
Z
B
½ŵwðE; d;rdÞ þ T � ðsymru	 EÞ 	 b � u	 b � d� 	

Z
o1B
Tn � ðu	 u0Þ

	
Z
o2B
s0 � u	

Z
o3B

Tn � ðd	 d0Þ 	
Z
o4B

s0 � d ð2:14Þ

with the energy density ŵwðE; d;rdÞ given by (2.8).
In Section 3 we will derive this functional from the system S by means of the semi-inverse method and

we will prove the following variational characterization of weak solutions for the equilibrium problem of a
continuum with a material microstructure described by a vector order parameter:

Proposition. An ordered array N ¼ ðu;E;T; d;rd;TÞ is a linear elastic state for a continuum with vectorial
microstructure if and only if it renders stationary the functional (2.14), i.e.

dCfu;E;T; d;rd;Tg½v;V;R; v;rv;R� ¼ 0;

8ðv;V;R; v;rv;RÞ in the space of all admissible variations such that

V ¼ symrv: ð2:15Þ
We will discuss in the following how to construct the space of admissible variations.

3. Variational formulation by the semi-inverse method

We seek for a mixed variational characterization of the system S using the semi-inverse method, as
suggested by He (2001) in the case of piezoelectricity.

Let us consider the following real functional

Cfu;E;T; d;rd;Tg ¼
Z
B
f dvþ Y ð3:1Þ
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where f, the trial Lagrange function, is a smooth enough unknown function of the independent variables
u;E;T; d;rd;T and Y is the boundary integral. A functional like (3.1) is called a trial functional. One could
construct various energy-like trial functionals to start from; (3.1) is the most general trial functional because
there are no a priori hypotheses on the form of the function f. The function f must be determined by the
equivalence between the stationarity conditions of the trial functional (named trial Euler equations) and the
field equations of the system S.

The stationarity condition of (3.1) with respect to the variable u gives

duC ¼
Z
B
ðouf 	 divðoruf ÞÞ � duþ

Z
oB
ðoruf Þn � du ¼ 0; 8du; ð3:2Þ

where

duf ¼ ouf 	 divðoruf Þ ð3:3Þ
is the functional derivative of f with respect to u, which reduces to the partial derivative when f is not an
explicit function of ru.

From (3.2) by localization on B we obtain the following trial Euler equation:

ouf 	 divðoruf Þ ¼ 0 in B; ð3:4Þ

by the equivalence condition between (3.4) and the balance of force (2.3a) one obtains the following partial
identification of f

f ¼ T � ru	 b � uþ f1: ð3:5Þ

Substituting (3.5) into (3.1) and taking the variation with respect to T together with (2.13) yield the
following trial Euler equation

symruþ oTf1 ¼ 0 in B ð3:6Þ
and the equivalence condition with the kinematical equation (2.4a) gives

f1 ¼ 	T � Eþ f2; ð3:7Þ

so (3.5) becomes

f ¼ T � ðsymru	 EÞ 	 b � uþ f2: ð3:8Þ
Operating in the same manner, the stationary condition of (3.1) with f given by (3.8) with respect to E

yields

	Tþ oEf2 ¼ 0 in B: ð3:9Þ
Integrating the equivalence condition between (3.9) and the constitutive equation (2.7d) we have

f2 ¼ 1
2
C½E� � Eþ h½d� � EþH½rd� � Eþ f3:

Now let us consider the variation of the functional C with respect to the director d:

ddC ¼
Z
B
ðodf 	 divðordf ÞÞ � ddþ

Z
oB
ðordf Þn � dd ¼ 0; 8dd; ð3:10Þ

in the above condition there is the functional derivative of f with respect to the director and a term which
will influence the boundary part of the functional, just as it happens for the variation du. The trial Euler
equation one obtains by localization of (3.10) in B is

odf 	 divðordf Þ ¼ 0; ð3:11Þ
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the substitution of the expression of f one has found yields

odf3 þ hT½E� 	 divðordf3Þ ¼ 0: ð3:12Þ

The equivalence condition of (3.12) to the equation obtained by subtracting (2.3b) to (2.7b) yields

f3 ¼ T � rdþ 1
2
Kd � dþ f½rd� � d	 b � dþ f4: ð3:13Þ

The trial Euler equation for drd reads

HT½E� þ fT½d� þ Tþ ordf4 ¼ 0 ð3:14Þ

and its equivalence to the constitutive equation (2.7c)

S½rd� þHT½E� þ fT½d� 	 T ¼ 0

gives

f4 ¼ 1
2
S½rd� � rd	 2T � rdþ f5: ð3:15Þ

By the same manipulation one has for dT:

	rdþ oTf5 ¼ 0 ) f5 ¼ T � rd; ð3:16Þ

therefore, by (2.8) we obtain the following final expression of the Lagrange function:

f ¼ ŵwðE; d;rdÞ þ T � ðsymru	 EÞ 	 b � u	 b � d: ð3:17Þ
If we substitute (3.17) into the functional (3.1), the functional we obtain is still subjected to the boundary

constraints (2.3d), (2.3e), (2.4b) and (2.4c). To incorporate these conditions into the functional and identify
the boundary part Y of C we repeat the procedure by using the above method. To begin with we may
express the boundary integral Y in the form

Y ¼
X4
i¼1

Z
oiB

gi da; ð3:18Þ

where gi ði ¼ 1; . . . ; 4Þ are unknown functions, smooth enough, to be determined.
At the boundary of the gross structure it is possible to assign the values of the displacement (u) and of the

traction (s¼Tn); by analogy, for the substructure we suppose that one could assign at the boundary the
values of the director (d) and of the work conjugate quantity, the generalized traction (s¼Tn). So, without
loss of generality, we may assume the following hypothesis

Y ¼ Y fu;T; d;Tg; ð3:19Þ
which obviously reflects into

gi ¼ giðu;TÞ; i ¼ 1; 2; ð3:20Þ

gi ¼ giðd;TÞ; i ¼ 3; 4: ð3:21Þ

By considering during the previous procedure the boundary integral as a functional Y ¼ Y fu;T; d;Tg
and taking into account also its variations produced by du, dT, dd, dT, we obtain, together with the trial
Euler equations considered before, the following trial stationary conditions on oiB:

du) Tnþ ougi ¼ 0; i ¼ 1; 2; ð3:22Þ

dT) oTgi ¼ 0; i ¼ 1; 2; ð3:23Þ
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dd ) Tnþ odgi ¼ 0; i ¼ 3; 4; ð3:24Þ

dT ) oTgi ¼ 0; i ¼ 3; 4: ð3:25Þ

We consider first o1B, and thus conditions (3.22) and (3.23) written for i ¼ 1 should be equivalent to the
boundary kinematical condition (2.4b), which gives

g1 ¼ 	Tn � ðu	 u0Þ: ð3:26Þ

Considering now o2B, conditions (3.22) and (3.23) written for i ¼ 2 should be equivalent to the boundary
static condition (2.3d) and this yields to

g2 ¼ 	s0 � u: ð3:27Þ

In the same way, the equivalence condition between (3.24) and (3.25) written for i ¼ 3 and the boundary
condition (2.4c) yields to the following identification on o3B

g3 ¼ 	Tn � ðd	 d0Þ ð3:28Þ

and finally the same manipulation between (3.24) and (3.25) written for i ¼ 4 and the boundary condition
(2.3e) gives on o4B

g4 ¼ 	s0 � d: ð3:29Þ

Substituting (3.17), (3.26)–(3.29) into the functional (3.1) with (3.18) we obtain the functional (2.14). Of
course, if the influence of the material microstructure is negligible and one disregards the terms relative to
the microstructure, then the obtained functional reduces to the well known Hu–Washizu functional (see
Washizu, 1975).

4. The space of variations

In this section we calculate the Gâateaux derivative of the functional (2.14) to prove the proposition
stated in Section 2. This simple calculation leads to the identification of the space of admissible variations
for the states space A one has to consider when deals with the proposed generalized Hu–Washizu-like
functional.

Let us consider a variation of the stress field Tþ eR and of the microstress field Tþ eR, with e 2 R; these
fields should satisfy the equilibrium equations (2.3a), (2.3b) and (2.13); thus we have the following char-
acterization of the space W of all admissible variations: W is the set of all ordered array of regular fields
ðv;V;R; v;rv;RÞ 2 A such that

V ¼ symrv;
v ¼ 0; on o1B; v ¼ 0; on o3B;

divR ¼ 0; divR ¼ 0; in B;

Rn ¼ 0; on o2B; Rn ¼ 0; on o4B:

ð4:1Þ

If we now differentiate at e ¼ 0 the mapping

e ! Cfuþ ev;ruþ erv;Eþ eV;Tþ eR; dþ ev;rdþ erv;Tþ eRg; ð4:2Þ

by definition (2.8), conditions (4.1) and applying the divergence theorem, we arrive at the first variation of
the functional (2.14) evaluated at ðu;E;T; d;rd;TÞ:
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dC u;E;T; d;rd;Tf g½v;V;R; v;rv;R� ¼
Z
B
½ðsymru	 EÞ � R	 ðdivTþ bÞ � v

þ ðC½E� þ h½d� þH½rd� 	 TÞ � V
	 ðdivTþ b	 hT½E� 	 K½d� 	 f½rd�Þ � v
þ ðS½rd� þHT½E� þ fT½d� 	 TÞ � rv�

	
Z
o1B
Rn � ðu	 u0Þ þ

Z
o2B

ðTn	 s0Þ � v

	
Z
o3B

Rn � ðd	 d0Þ þ
Z
o4B

ðTn	 s0Þ � v ð4:3Þ

which proves the statement (2.15).

Remark 3.We observe that the localization on B of the stationary condition with respect to the variation v
gives the following result

divTþ b ¼ hT½E� þ K½d� þ f½rd�; ð4:4Þ

where the right term is an internal force which represents the interactions within the substructure; if we
identify this term with the opposite of the interactive microforce k, from (4.4) we have at the same time both
the balance of substructural interactions (2.3b) and the constitutive equation (2.7b).

The mixed functional (2.14) could be useful in performing numerical analysis by means of the finite
element method. In this case another formulation consists into considering the following mixed functional
defined over the subset Ac � A of all kinematical admissible states, i.e. all admissible states which satisfy
the compatibility condition (2.4a):

W : Ac ! R;

W u;T; d;rd;Tf g ¼
Z
B
½w^ðu; d;rdÞ 	 b � u	 b � d� 	

Z
o1B
Tn � ðu	 u0Þ 	

Z
o2B
s0 � u

	
Z
o3B

Tn � ðd	 d0Þ 	
Z
o4B

s0 � d; ð4:5Þ

the stationary condition of this Hellinger–Reissner-like functional represents the variational character-
ization of balance equations (2.3a), (2.3b), (2.3d), (2.3e), constitutive equations (2.7d), (2.7b), (2.7c) and
kinematical boundary conditions (2.4b) and (2.4c).

If we also assume that constitutive equations (2.7d), (2.7b), (2.7c) and kinematical boundary conditions
(2.4b) and (2.4c) are a priori fulfilled, we obtain from (4.5) the following total potential energy functional
for a linear elastic body with a vectorial microstructure

Ufu; d;rdg ¼
Z
B
½w_ðu; d;rdÞ 	 b � u	 b � d� 	

Z
o2B
s0 � u	

Z
o4B

s0 � d; ð4:6Þ

with

w
_ðu;d;rdÞ ¼ 1

2
ðT
_

ðu; d;rdÞ � ruþ T
_

ðu; d;rdÞ � rd	 k
_

ðu; d;rdÞ � dÞ; ð4:7Þ

which is a three fields functional whose stationary condition is the variational characterization of the force
and microforce balance equations (2.3a) and (2.3b) and the associated static boundary conditions (2.3d)
and (2.3e).
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Remark 4. When the material microstructure which characterizes the behavior of a body can be described
by a scalar-valued order parameter d, as in porous bodies or in two-phase systems (see Capriz, 1989;
Mariano, 2001), the microstress is a vector-valued field T while the generalized traction t and the volume
microforce b are scalar-valued. The previous format can be applied yet: the functional (2.14) accordingly
transforms into the following:

H u;E;T; d;rd; tf g ¼
Z
B
½ŵwðE; d;rdÞ þ T � ðsymru	 EÞ 	 b � u	 bd� 	

Z
o1B
Tn � ðu	 u0Þ

	
Z
o2B
s0 � u	

Z
o3B

ðd 	 d0ÞT � n	
Z
o4B

s0d ð4:8Þ

and (4.5) and (4.6) consequently transform.

5. Application I. Microcracked bodies

As pointed out by Mariano (1999) it is possible to study microcracked bodies in the context of multifield
theories by using the model of continua with microstructure instead of the classical internal variable
scheme.

In a body B with diffused microcracks inside, under any deformation mapping a material point p into a
point x of E, the patch at the reference position X undergoes a (complete) displacement uðXÞ þ uðXÞ

x ¼ Xþ uðXÞ þ uðXÞ; ð5:1Þ

where the order parameter u(X) represents the kinematical component to the displacement field due to the
enlargement or the closure of microcracks enclosed in a neighborhood of X; u(X) is called the mean relative
displacement and it represents the difference between the effective (real) displacement of the patch at X and
the theoretical displacement occurring at X if microcracks are absent:

uðXÞ ¼ urealðXÞ 	 uðXÞ: ð5:2Þ
As common in multifield theories, u is not affected by rigid translations of the observer, and this is

because it is a relative microdisplacement, the mean relative displacement between the margins of the
microcrack at X.

For the kinematical microstructure introduced M � V, the order parameter u is a vector as the mi-
croforces k and b, while the microstress T is a second-order tensor. Moreover for microcracks we can
assume kuk � 1.

By the physical meaning of the field u it is possible to introduce the total deformation gradient

Ft ¼ rXx ¼ Iþruþru ¼ eFFF; ð5:3Þ
where

eFF ¼ IþruF	1 ð5:4Þ
is the gradient of the additional deformation produced by microcracks, which we think superposed to that
associated to u. In this section the gradient of the director u is to be interpreted in the generalized sense.

It is also possible to introduce global measures of deformation. In the case of the linear theory with
cracks which do not grow and evolve, assuming that kruk � 1 and kruk � 1, the overall (total) linearized
strain tensor has an expression like the one used in infinitesimal plasticity:

Et ¼ Eþ E; ð5:5Þ
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where

E ¼ symru: ð5:6Þ

We assume null volume microforces, b¼ 0, conditions (2.2) to be valid and, without loss of generality,
homogeneous boundary conditions for the substructural fields, in particular u0 ¼ 0 on o1B, which is
equivalent to suppose no microcracks on the boundary. As discussed in Mariano (1999), this condition is
generic: it seems natural to have a (macro-) displacement boundary condition different from zero, while any
microcrack which arrives on the boundary will influence the roughness of the interested surface.

We also assume a linear elastic behavior of the microcracked body. Moreover, as it is customary in
classical and modern theories of fracture mechanics (see Del Piero and Truskinovsky, 2001), where the
elastic energy is split into a bulk part, which is a function of strain, and a surface (cohesive) part, which is a
function of the components of relative displacements on the surface of discontinuity, we assume for the
internal energy density the following decomposition:

ŵwðE; u;ruÞ ¼ -ðE;ruÞ þ hðuÞ; ð5:7Þ

i.e. we assume the existence of an interfacial energy which is a function of the jump of the real displacement,
in the present context a function of the order parameter u, the mean of the jumping part of the real dis-
placement field. Such an assumption implies in the linearized constitutive relations (2.7a)–(2.7d) h ¼ f ¼ 0:

T ¼ C½E� þH½ru�;
k ¼ 	Ku;
T ¼ S½ru� þHT½E�;

ð5:8Þ

the corresponding energy densities, respectively the bulk and the interfacial, having the forms

-ðE;ruÞ ¼ 1
2
ðC½E� � Eþ S½ru� � ruÞ þH½ru� � E; ð5:9Þ

hðuÞ ¼ 1

2
Ku � u; ð5:10Þ

constitutive equations (5.8) can be arrived at by following the procedure of Mariano and Stazi (2001).
The obtained equilibrium problem in B with constitutive equations (5.8) is

divðC½E� þH½ru�Þ þ b ¼ 0; ð5:11Þ

divðS½ru� þHT½E�Þ þ b	 Ku ¼ 0; ð5:12Þ

the solution of (5.11) and (5.12) allows to obtain the localization phenomena of the deformation, thanks to
the presence of the interactive microforce k which physically represents the interactions between the mi-
crocracks. This result is impossible to obtain in the standard linear elasticity model of Cauchy continua or
in the elastic case of an internal variable model.

From the functional (2.14) we have the following mixed variational characterization of equilibrium
problem for a body with microcracks:

dFfu;E;T; u;ru;Tg ¼ d
Z
B
½-ðE;ruÞ

�
þ hðuÞ þ T � ðsymru	 EÞ 	 b � u� 	

Z
o1B

ðTn � ðu	 u0Þ þ Tn � uÞ

	
Z
o2B

ðs0 � uþ s0 � uÞ
�

¼ 0 ð5:13Þ

while from (4.6) we obtain the following linear version of the variational characterization first proposed by
Mariano (1999) for nonlinear elasticity of microcracked bodies:
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dEfu; u;rug ¼ d
Z
B
ð-^ðru;ruÞ

�
þ hðuÞ 	 b � uÞ 	

Z
o2B

ðs0 � uþ s0 � uÞ
�

¼ 0;

u	 u0 ¼ 0; u ¼ 0 on o1B;
ð5:14Þ

with

-
^ðru;ruÞ ¼ 1

2
ðC½ru� � ruþ S½ru� � ruÞ þH½ru� � ru; ð5:15Þ

these variational characterizations are useful to derive numerical formulations and solutions of the dif-
ferential system (5.11) and (5.12) (see Mariano and Stazi, 2001, where a finite element formulation in the
spirit of the displacement method was worked out).

6. Application II. Piezoelectric bodies

Here we deal with the linear theory of piezoelectricity. In particular, we want to set the theory of pi-
ezoelectric continua in the multifield theories context, as a particular case of continua with a scalar mi-
crostructure characterized by a null interactive microforce k.

As it is well known, in the linear theory of piezoelectric bodies (valid in the case of infinitesimal me-
chanical deformations and small electric fields), the equilibrium equations are (2.3a), (2.3d) and (2.13),
while the kinematical equations are (2.4a) and (2.4b). Moreover, let eðX; tÞ and dðX; tÞ denote respectively
the electric and electric displacement fields over B, which obey the Maxwell equations in the quasi-static
approximation (see Maugin, 1988)

curle ¼ 0; or e ¼ 	r/ in B; ð6:1Þ

divd ¼ x in B; ð6:2Þ

together with the associated boundary conditions

d � n ¼ q on oqB; ð6:3Þ

/ ¼ /0 on o/B; ð6:4Þ

here / is the electric potential, x is the volume charge density defined on B, q is the surface charge density
prescribed on the portion of the boundary oqB and /0 is the prescribed electric potential on the comple-
mentary part of the boundary o/B. Moreover, the infinitesimal strain, the stress, the electric and electric
displacement fields are related by the linear constitutive equations (see Voigt, 1910):

T ¼ CðeÞ½E� 	 h½e�;
d ¼ hT½E� þ KðEÞe;

ð6:5Þ

where the elasticity tensor field CðeÞ, evaluated at constant electric field e, is a symmetric, positive-definite
linear mapping from Sym to itself, the dielectric tensor field KðEÞ, evaluated at constant mechanical strain E,
is a symmetric positive-definite linear mapping of Lin to Lin and the piezoelectric stress tensor field h is a
linear mapping from V to Sym, whose transpose hT maps Sym into V (in components, ðhTÞijk ¼ hkijÞ. So a
piezoelastic state is described by the pair (E,e) or equivalently, because of the (6.1, part 1), by the pair
ðE;/Þ.

If we assume the electric potential /ðXÞ as the order parameter, we are in the case of a scalar micro-
structure, with M � R; by means of the Maxwell equation (6.1, part 2), in this context a kinematic
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equation, the order parameter gradient r/ represents the opposite of the electric field e and the dual
quantity, the microstress T is a vector playing the role of the electric displacement field d.

Since in a piezoelectric body the total energy density can be written as a function of the deformation and
of the electric field, v ¼ v̂vðE; eÞ, we assume that the total energy density (2.6) is not explicitly dependent on
the order parameter itself /

w ¼ ŵwðE;r/Þ ð6:6Þ

and that has the quadratic representation:

ŵwðE;r/Þ ¼ 1
2
ðC½E� � Eþ S½r/� � r/Þ þ h½r/� � E: ð6:7Þ

As consequence, constitutive equations for the general linear theory of an hyperelastic continuum with a
scalar microstructure reduce to (6.5), with h the third-order piezoelectric stress tensor and S the opposite of
the second-order symmetric dielectric tensor. Moreover, the interactive microforce is identically zero
k ¼ 	ow=o/ ¼ 0 and the Maxwell equation (6.2) can be obtained as a balance of substructural interactions
by means of (2.3b), with the volume microforce b (which in the case of a scalar microstructure is a scalar
field on B) equals to the opposite of the volume charge density x.

By applying the mixed functional (4.8), identifying o/B with o3B and oqB with o4B, we obtain the fol-
lowing six fields functional for the variational characterization of the equilibrium problem of a linear pi-
ezoelectric body:

Y u;E;T;/;r/; df g ¼
Z
B
½wðE;r/Þ þ T � ðsymru	 EÞ 	 b � uþ x/� 	

Z
o1B
Tn � ðu	 u0Þ

	
Z
o2B
s0 � u	

Z
o/B
d � nð/ 	 /0Þ 	

Z
oqB

q/: ð6:8Þ

The functional (6.8) coincides with the functional obtained in He (2001, cf. Eq. (4.39)), with the con-
straint e ¼ 	r/ in B, and it is the simplified version of the Hu–Washizu type functional obtained by Yang
and Batra for the nonlinear theory of electroelasticity (see Yang and Batra, 1995, Eq. (29)), in the case of
quasi-static deformations of a linear piezoelectric body.

7. Conclusions

We have derived a Hu–Washizu-like variational principle for continua with vectorial microstructure,
that is continua endowed with a director field, using a semi-inverse approach instead of the classical
Lagrange multipliers method. Then we have applied the obtained six fields mixed functional, valid in a fully
linear setting, to microcracked and piezoelectric bodies, obtaining in both cases variational principles useful
for applications.
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